SPLENOMEGALY AND SPLENECTOMY

DR.BAGHERSALIMI

Splenomegaly and splenectomy

Introduction

- Increased destruction of RBC in the spleen, together with extramedullary hematopoiesis, results in splenomegaly
- Splenectomy, is more commonly needed in TI than
 TM
- □ The main reason for splenectomy in TM is to decrease transfusion and resultant reducing iron overload

Introduction

- Current transfusion guidelines reduced incidence of splenomegaly and need for splenectomy
- □ The probability of undergoing surgery for patients with TM within the first 10 years of life is
- 57% if born in 1960s
- 22% if born in 1970s
- 6% if born in 1980s and
- 7% if born in 1990s

Introduction

- Spleen Size in TM should be checked by PhE and as needed, by ultrasonography
- □ Splenomegaly due to under-transfusion may be reversible
- Before considering splenectomy in this situation, patient should be placed on adequate transfusion program and then re-evaluated
- □ The spleen may increase in size during pregnancy and these patients require careful F/U

Steps to reduce or to delay the splenomegaly

- Maintain pre-transfusion Hb >9 g/dl
- Sustained splenomegaly despite this regimen may be reversible by increasing transfusion, at the cost of increased iron load
- Use of the fresh PC, less than 2 weeks old

Indications for Splenectomy

- □ All agree to restrict it due to increased risk of:
- venous thrombosis
- pulmonary hypertension
- Overwhelming infections after splenectomy
- Splenectomy should be avoided in children <5
 years because of a considerably greater risk of
 fulminant sepsis

Table 1. Indications for Splenectomy in Thalassaemia Major.

INDICATION	COMMENT	
Increased blood requirements that prevent adequate control with iron chelation therapy, having made sure that the increased requirements are not due to allo/auto-antibodies or blood loss.	Annual transfusion volume used to flag an increased blood requirement (200-275 ml/kg/yr red cells)*. However, if effective chelation therapy continues to be maintained despite increased transfusion, splenectomy may not be necessary.	
Hypersplenism	Cytopenias causing clinical problems	
Symptomatic splenomegaly	 Accompanied by symptoms such as left upper quadrant pain or early satiety. Massive splenomegaly causing concern about possible splenic rupture. 	

- Surgery should include a careful search for accessory spleens
- □ There are **four** approaches to splenectomy:
- Open total splenectomy
- Laparoscopic total splenectomy,
- Partial splenectomy and
- Reduction of splenic tissue by embolization

- □ Laparoscopic splenectomy is associated with:
- Reduction in postoperative mortality,
- Shorter hospital stay, and
- Fewer pulmonary, wound and infectious complications
- Also, superiority of laparoscopic splenectomy in patients with massive spleen demonstrated

- Partial splenectomy is used to preserve of the immune function while reducing the degree of hypersplenism
- \square There is no conclusion about effectiveness of partial splenectomy VS total splenectomy
- □ The long-term success of this approach is still undergoing evaluation
- Splenic re-growth and the volume of splenic tissue required to preserve immune function are two main questions

- □ Splenic embolization is less invasive
- □ The exact splenic volume necessary is undefined, optimal reduction is about 50% 70%
- Common complications are fever, nausea, pain and possible need for a subsequent total splenectomy
- Significant complications include abscess formation, pleural effusion, portal vein thrombosis and liver failure
- Serious complications occur when the volume embolized is 70% or greater
- Splenic embolization has not gained wide acceptance
- Embolization does not permit a search for accessory spleens

Concomitant Cholecystectomy

- An evaluation for gallstones should be performed prior to splenectomy,
- Especially if patient has related symptoms
- □ Positive findings will lead to cholecystectomy at the same time
- Removal of the appendix at the time of splenectomy may prevent later problems in distinguishing infection with Yersinia from appendicitis
- Splenectomy is a opportunity for liver biopsy

Adverse Events of Splenectomy

Peri-operative complications

- Bleeding
- Atelectasis
- Subphrenic abscess

Major adverse effects are

- Sepsis
- Thrombosis and
- Pulmonary hypertension

Sepsis

- □ The major long-term risk after splenectomy is sepsis because:
- Spleen has important defense functions by removing antigens and synthesizing antibodies, tuftsin, and Igs, principally IgM
- Removal of the spleen is associated with predisposition to severe infections and mortality

The risk of overwhelming post-splenectomy infection varies with:

- \Box Age: risk is greatest in children < 16 and in adults > 50 years
- □ **Time since splenectomy**: the risk of sepsis is life-long and reported as much as 25-40 years after splenectomy,
- □ However, the greatest risk is in the period 1-4 years after surgery

Sepsis

status of patient

- □ Frequent pathogens are Streptococcus pneumoniae, H-influenzae type B, and Neisseria meningitidis, with high mortality rate
- Other organisms are E-coli, Pseudomonas aeruginosa, Salmonella, and Klebsiella
- □ Vaccination and prophylactic antibiotics can prevent pneumococcal infections in first 2-4 post-splenectomy yrs
- Babesia have been implicated in a fulminant haemolytic febrile state in splenectomized patients
- Malaria is more severe in asplenic people with an increased risk of death

Sepsis

status of patient

- Sudden onset of fever and
- Chills,
- Vomiting and
- Headache
- The illness rapidly progresses to hypotensive shock, and is commonly accompanied by DIC
- \square The mortality rate is approximately 50%,
- □ Therefore, early intervention based on suspicion, even in the absence of many of the above findings, is critical

Table 2. Immune prophylaxis in splenectomised patients (modified from Davies 2011)

VACCINE*	SCHEDULE	COMMENT
Streptococcus Pneumoniae Pneumococcal polysaccharide (23 valent) vaccine [Pneumovax 11) 1 dose 0.5ml IM ¹	4-6 weeks pre-splenectomy or at least 2 weeks in advance ² . Repeat 5 yearly thereafter.	Rate of protection is 70-85% • The immune response is poor in children less than two years of age. In this age group PCV7 may be used
Haemophilus influenzae type B	4-6 weeks pre-splenectomy or at least 2 weeks in advance ² .	There are currently no recommendations for repeat vaccinations
Meningococcal Group C conjugate vaccine	4-6 weeks pre-splenectomy or at least 2 weeks in ad- vance ² . MenACWY 2 months later Repeat 5 yearly thereafter.	
Influenza virus vaccination	Yearly	This should also be offered to non-splenectomised patients

^{*} Children vaccinated under the age of two should be re-vaccinated at age two.

¹ CDC (USA) guidelines additionally advise that a second pneumococcal vaccine, PCV13, should also be given 2 months prior to the 23 valent vaccine.

Chemoprophylaxis in splenectomized patients

- □ Risk of infection after splenectomy is lifelong, but is highest in the first few years post-operatively
- A broad spectrum antibiotic should be given pre- and continued post-operatively
- □ There are no defdinite guideline regarding the length of time post-splenectomy penicillin should be continued
- □ A policy is the use of life-long prophylactic penicillin
- One guidelines recommend to life-long prophylactic antibiotics for patients at high risk of pneumococcal infection using penicillins or macrolides

Chemoprophylaxis in splenectomised patients

- Another guideline recommend penicillin prophylaxis post-splenectomy up to the age 16 years and over the age of 50 years
- Others recommend prophylaxis in children for 5
 years and adults 2 years post-splenectomy
- Antibiotic prophylaxis should be prescribed when a splenectomized patient undergoes invasive dental procedures and should be applied for pre- or postof any other invasive procedure

Chemoprophylaxis in splenectomized patients

- □ The importance of compliance with prophylactic antibiotics should be stressed to patients and parents
- However, Patients and parents should recognize that chemoprophylaxis does not prevent all cases of postsplenectomy sepsis
- □ The risk of death from febrile illnesses remains high, and rapid evaluation of febrile episode is essential
- □ Patient and parents must report febrile illnesses and seeking immediate medical attention

For febrile episodes, the physician should consider

- □ Evaluating the patient with PhE, B/C and other cultures as indicated
- Starting antibiotics against Streptococcus, Neisseria and Klebsiella while waiting for cultures
- Liver abscess should be screened, particularly in diabetic patients
- □ Patients need to be aware of the potential for travelrelated infections such as malaria
- Patients should be given a card with their splenectomy status and contact number of their primary treatment centre/team

Hypercoagulability

- Thromboembolism is common both in the peri-operative period and postsplenectomy
- TM patients, particularly those with splenectomy have tendency for both venous and arterial embolism
- One of the main factors is the procoagulant effect of phospholipids on the surface of altered RBC, as the number of these cells is dramatically increased after splenectomy
- □ In post-splenectomy patients, markers of thrombin generation such as D-dimer should be assessed annually,
- Portal vein thrombosis post-splenectomy can also occur despite prophylactic anticoagulation

Hypercoagulability

- □ Following splenectomy, thrombocytosis is common, with PLT often reaching 1,000,000
- □ The UK thalassemia guidelines state that perioperative thromboprophylaxis should be routinely given and continued until the patient is fully mobile
- □ It is recommended that all post-splenectomy patients receive aspirin as long as there are no contraindications
- □ This is particularly important for patients with a history of previous thrombosis or other risk factors

Pulmonary hypertension

- □ This complication is more frequent in TI, but is also increasingly identified in TM
- Advancing age and a history of splenectomy are major risk factors in this population
- Pulmonary HTN is a consequence of delayed of pulmonary artery thromboembolism
- □ It is shown that pulmonary HTN is associated with splenectomy

Iron overload

- □ Spleen is a major organ of iron storage in TM
- □ Following splenectomy, the total body iron storage capacity is reduced
- Splenectomy causes major changes in the status of iron overload and toxicity in TM patients
- □ Iron will be redirected and in the liver, heart and other organs, unless effective chelation is introduced
- □ Splenectomized patients had higher incidence of myocardial iron load (48%) compared to non-splenectomized patients (28%)

- Splenectomy is the recommended intervention to reduce blood requirement and consequent severe iron overload
- □ But splenectomy has a high disease burden
- Current transfusion regimens and chelation have reduced the incidence of splenomegaly and iron overload in TM patients

- It is not recommend splenectomy as a standard procedure in TM
- Splenectomy is linked to a variety of complications such as pulmonary HTN, brain infarcts, venous thrombosis and sepsis

But should be considered in three clinical scenarios

- Increased blood requirement that prevents iron control
- Hypersplenism and
- Symptomatic splenomegaly

- 2. Laparoscopic splenectomy seems to be the most favorable
- 3. Most frequent pathogens in splenectomised patients are Streptococcus, Neisseria, Haemophilus influenzae type B
- Immune prophylaxis is recommended against these agents at least 2 weeks prior to the operation and repeated per guideline
- Annual influenza vaccination is encouraged

- 4. Chemoprophylaxis with penicillin depends on the age of the patient and physician's opinion
- Life-long antibiotics should be offered to patients considered at high risk of pneumococcal infection using oral penicillins or macrolides
- 5. Due to new transfusion and chelation protocols, fewer splenectomies are seen than before

- □ ADHERE to current transfusion guidelines to prevent or delay splenomegaly
- If splenectomy cannot be avoided, make sure IMMUNIZATION protocols are followed
- Be aware of the dangers of THROMBOSIS in the periand post-operative period
- Discuss CHEMOPROPHYLAXIS with patient/family and make sure they are aware of the dangers of post-splenectomy sepsis
- START IV antibiotics in case of suspected sepsis while awaiting culture results

THANK YOU